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On nonlinear wave groups and crest statistics
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We present a second-order stochastic model of weakly nonlinear waves and develop
theoretical expressions for the expected shape of large surface displacements. The
model also leads to an exact theoretical expression for the statistical distribution
of large wave crests in a form that generalizes the Tayfun distribution (Tayfun, J.
Geophys. Res., vol. 85, 1980, p. 1548). The generalized distribution depends on a
steepness parameter given by μ = λ3/3, where λ3 represents the skewness coefficient
of surface displacements. It converges to the Tayfun distribution in narrowband
waves, where both distributions describe the crests of all waves well. In broadband
waves, the generalized distribution represents the crests of large waves just as
well whereas the Tayfun distribution appears as an upper bound and tends to
overestimate them. However, the theoretical nature of the generalized distribution
presents practical difficulties in oceanic applications. We circumvent these by adopting
an appropriate approximation for the steepness parameter. Comparisons with wind-
wave measurements from the North Sea suggest that this approximation allows both
distributions to assume an identical form with which we can describe the distribution
of large wave crests fairly accurately. The same comparisons also show that third-
order nonlinear effects do not appear to have any discernable effect on the statistics
of large surface displacements or wave crests.

1. Introduction
In linear random seas, relatively large waves appear more regular or ‘narrowband’

in the sense that they do not display any secondary maxima or minima, but a
single dominant crest (Longuet-Higgins 1957; Tayfun in press). This allows the
expected shape of large surface displacements and the distribution of large crests
to be described reasonably well based on Gaussian statistics and the Rayleigh
distribution, respectively (Longuet-Higgins 1957; Lindgren 1970, 1972; Lindgren
& Rychlik 1991; Phillips, Gu & Donelan 1993; Boccotti 2000). However, oceanic
waves are nonlinear, displaying sharper narrower crests and shallower more rounded
troughs. Accordingly, the distribution of surface displacements tends to deviate from
the Gaussian form with a positive skewness. For such waves, the exact forms of the
theoretical expressions describing the distributions of surface displacements and wave
crests are not known under general conditions. Longuet-Higgins (1963) approximated
the distribution of surface elevations in a Gram-Charlier type series. Tayfun (1980)
explored a Stokes-like model, and devised a simple theoretical model for describing the
distribution of nonlinear crests in narrowband waves. Since 1980s, numerous nonlinear
crest-height models have also been proposed by Winterstein (1988), Marthinsen &
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Winterstein (1992), Kriebel & Dawson (1993), Forristall (2000), Prevosto, Krogstad
& Robin (2000), Arena & Fedele (2002), Prevosto & Forristall (2002), Tromans &
Vanderschuren (2004), Milder (2007) and others. These provide valuable insight and
work well with varying degrees of success in describing the distribution of crests
of large waves. Some models are basically statistical in nature in the sense that
they either use nonlinear transformations of Gaussian variables analogous to Gram-
Charlier type expansions or fit observational data to a theoretical distribution defined
in terms of parameters which reflect second-order nonlinear corrections (Winterstein
1988; Forristall 2000). Some represent extensions of the narrowband approximations
to shallow-water waves (Marthinsen & Winterstein 1992; Prevosto et al. 2000) or
heuristic modifications of the Tayfun model (Kriebel & Dawson 1993), and others
require intricate analytics, directional spectra or numerical computation (Arena &
Fedele 2002; Prevesto & Forristall 2002; Tromans & Vanderschuren 2004; Milder
2007). As for the expected shape of large waves in second-order seas, Jensen (1996,
2005) developed theoretical approximations based on Gram-Charlier expansions, and
Tayfun & Fedele (2007a) considered simpler narrowband approximations and also
formulated an exact theoretical expression, extending the linear quasi-deterministic
theory of Boccotti (2000) to second-order waves.

Simulations of relatively broadband waves, linear or nonlinear, and oceanic
observations of wind waves show that wave crests in general follow a complex
bimodal distribution characterized by a relatively sharp narrow mode over the range
of low waves, and a more familiar and wider second mode over larger waves (Tayfun
2006). This structure cannot be predicted by any theoretical expression devised so
far in any of the aforementioned studies. Exact theoretical representations in the
Rayleigh form for linear waves and in the Tayfun form for nonlinear waves are valid
only for the crests of extremely long-crested and unrealistically narrowband waves.
Amplitudes of such waves are also prone to symmetric amplifications induced by
third-order modulational instabilities which can modify the distribution of various
surface features well beyond the second-order predictions (Socquet-Juglard et al. 2005;
Mori & Janssen 2006; Onorato et al. 2006). Although the Tayfun model coupled with
third-order Gram-Charlier expansions seems to work reasonably well in such cases
(Tayfun & Fedele 2007b), modulational instabilities do not appear likely in short-
crested oceanic wind waves. This is confirmed by directional simulations of relatively
broadband waves by way of the modified nonlinear Schödinger (NLS) equation
(Dysthe 1979; Socquet-Juglard et al. 2005; Gramstad & Trulsen 2007) as well as by
the statistics derived from oceanic measurements (Forristall 2000, 2007; Tayfun &
Fedele 2007b, 2008).

Herein, we first briefly review and extend Boccotti’s linear quasi-deterministic theory
(Boccotti 1989, 2000) to second-order random waves, and derive a new stochastic
representation of wave groups for describing the statistical structure of the sea surface
around a large crest. This enables us to obtain exact theoretical expressions describing
the expected shape of large surface displacements and the statistical distribution of
associated wave crests. The first of these results agrees with a previous theoretical
expression derived somewhat heuristically in Tayfun & Fedele (2007b), where it is
also compared with the approximations of Jensen (1996, 2005), Tayfun & Fedele
(2007a) and oceanic observations. We, therefore, focus our attention in the remainder
of the paper on the statistical structure of large wave crests, and derive their statistical
distribution in a form that generalizes the Tayfun model.

The relative validity and accuracy of the generalized model in representing the
statistics of large wave crests depend on the selection of a dimensionless steepness
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parameter μ. In essence, μ characterizes the nonlinearity of large waves, and it is
closely associated with the vertical skewness of the nonlinear sea surface. We explore
the nature of the generalized model and compare it with the original Tayfun model
by way of simple second-order simulations of infinitely long-crested waves. In all
comparisons with the original Tayfun model, we stay faithful to the narrowband
definition of the steepness parameter in Tayfun (1980). We first show that the
generalized distribution describes the distribution of simulated crests over large waves
quite well. It also converges to the Tayfun distribution in narrowband waves, where
both tend to describe crests of all waves quite accurately. For broadband waves, the
generalized distribution describes large wave crests just as well whereas the Tayfun
distribution appears as an upper bound and tends to overpredict them. However,
the theoretical nature of the generalized distribution, in particular, its dependence
on a steepness definition expressed in terms of the first-order integral properties
present practical difficulties in oceanic applications. We overcome these by modifying
the definition of steepness parameter slightly, rendering the generalized model more
practical and the Tayfun model more accurate for applications. Comparisons with
wind-wave measurements from the North Sea show that the steepness parameter so
modified reduces both models to a simple identical form with which the distribution
of large wave crests can be described fairly well. The same comparisons also suggest
that third-order nonlinear effects such as NLS type modulational instabilities do not
appear to have any discernable effect on the statistics of large surface displacements
or wave crests.

2. Second-order waves
We consider weakly nonlinear random waves propagating in water of uniform

depth d . In Cartesian coordinates x = (x, y) coincident with the mean sea level, z-axis
pointing upward and t time, the second-order sea surface displacement ζ (x, t) and
the associated velocity potential φ(x, z, t) are given, respectively, by the real parts of

ζ = ζ1 + ζ2, φ = φ1 + φ2, (2.1)

with

ζ1(x, t) =

N∑
n=1

cne
iθn , (2.2)

φ1(x, z, t) = −ig

N∑
n=1

cn

ωn

cosh kn(z + d)

cosh knd
eiθn , (2.3)

ζ2(x, t) =
1

4

N∑
n,m=1

cncm

[
A+

nmei(θn+θm) + A−
nmei(θn−θm)

]
, (2.4)

φ2(x, z, t) = −i
g2

4

N∑
n,m=1

cncm(ωnωm)−1
[
B+

nmei(θn+θm) + B−
nmei(θn−θm)

]
, (2.5)

where θn = kn · x − ωnt + δn = knx cosϕn + kny sinϕn − ωnt + δn, and A±
nm = A±(kn, km)

and B±
nm = B±(kn, km, z) represent interaction coefficients (cf. Sharma & Dean 1979),

kn is horizontal wavenumber vector, with kn = |kn|; ϕn is direction measured from
the x-axis; and ωn is angular frequency, related to kn via kn tanh knd =ω2

n/g, with g

the gravitational acceleration. Phases δn are independent and uniformly distributed
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in [0, 2π], and amplitudes cn are related to the spectrum S of ζ1 in the form

S(k) dk=S(k, ϕ)kδkδϕ =
∑

n

|cn|2

2
, (2.6)

where the sum is over (kn, ϕn) ∈ ([k, k + δk], [ϕ, ϕ + δϕ]). The j th order spectral
moment is

mj =

∫ ∞

0

ωjS (k) dk. (2.7)

In theory, the validity of the form assumed for ζ requires that the r.m.s. surface
gradient of ζ1 be sufficiently small. Specifically,

ε =

√
〈|∇ζ1|2〉 =

√
m4

g
	 1, (2.8)

where 〈·〉 denotes expectation. The spectral mean frequency ωm, and bandwidth ν of
S irrespective of direction are defined by

ωm =
m1

m0

, ν =

√
m0m2

m2
1

− 1. (2.9)

To O(ε), the space–time covariance Ψ of both ζ1 and ζ is given in continuous form
by

Ψ (X, T ) = 〈ζ1 (x, t) ζ1 (x + X, t + T )〉 =

∫
S(k) cos(k · X − ωT ) dk, (2.10)

where X = (X, Y ). Setting ψ(T ) = Ψ (0, T ) for simplicity, ψ(0) = m0 = σ 2 gives the
absolute maximum of ψ . We assume that the first absolute minimum of ψ occurs at
T = T ∗ and that ψ decreases monotonically between T = 0 and T = T ∗. Similarly, the
cross-covariance of ζ and φ is given to O(ε) by that of ζ1 and φ1 as

Φ(X, z, T ) = 〈ζ1 (x, t) φ1 (x + X, z, t + T )〉 = g

∫
S(k)

cosh k(z + d)

ω cosh kd
sin(k · X −ωT ) dk.

(2.11)

3. Skewness coefficient
The skewness coefficient of ζ is defined by λ3 = 〈ζ 3〉/〈ζ 2〉3/2 = 3〈ζ 2

1 ζ2〉/〈ζ 2
1 〉3/2 correct

to O(ε). Thus, it follows from (2.2) and (2.4) that

λ3 =
3

〈
ζ 2
1 ζ2

〉
〈
ζ 2
1

〉3/2
=

3

2σ 3

∫
[A+(k1, k2) + A−(k1, k2)]S(k1)S(k2) dk1dk2 + O(ε2). (3.1)

The interaction coefficients A+ and A− relate to the second-order bound harmonics
with frequencies ω1 + ω2 and ω1 − ω2, respectively. In the most general case, both
coefficients assume rather intricate functional forms, not amenable to general analysis.
In deep water, however, A± and thus (3.1) reduces to simpler expressions, which have
previously been explored at length by Longuet-Higgins (1963), Srokozs & Longuet-
Higgins (1986), Tayfun (1986), Vinje & Haver (1994) and others. In general, λ3 > 0
always. It also attains peak values when all component waves travel nearly in the
same direction. Clearly, (3.1) can be rewritten as λ3 = λ+

3 + λ−
3 , where λ+

3 and λ−
3

represent the contributions from A+ and A−, respectively. For waves travelling all in
the same direction, A± = ± |ω2

1 ± ω2
2|/g and so

λ+
3 /3μm = 1 + ν2, (3.2)
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where μm = σω2
m/g is an integral measure of wave steepness. Further, while λ+

3 > 0
clearly, λ−

3 is always negative. Thus, bound harmonics representing frequency
differences ω1 − ω2 tend to reduce λ3, as first noted some years ago (Tayfun 1986).
Unfortunately, λ−

3 does not admit a simple expression in terms of integral spectral
properties as λ+

3 does. To gain some further insight into the nature of λ−
3 , we can

make use of ω2
1 − ω2

2 � |ω2
1 − ω2

2| =(ω1 + ω2)|ω1 − ω2| and Schwarz’s inequality in (3.1)
to obtain (Tayfun 2006)

ν2 � |λ−
3 | /3μm � ν(2 + ν2). (3.3)

We can now combine (3.2) with λ−
3 /3μm � − ν2 from the preceding expression to

show that λ3 � 3μm in general, with the equality holding as an upper bound in the
narrowband limit as ν → 0 and λ−

3 → 0. The theoretical maximum of λ3 in directional
waves is only about 1 % larger than the preceding upper bound (cf. Longuet-Higgins
1963).

To illustrate the preceding results explicitly and, in particular, how λ3 varies with
the spectral bandwidth, consider waves all travelling in the same direction with a
frequency spectrum of the ‘generalized Phillips’ form

S(ω) =

⎧⎨
⎩

m0(n − 1)

ωp

(
ωp

ω

)n

, ω � ωp,

0, ω < ωp,

(3.4)

where ωp is the frequency at the spectrum peak. We consider n � 4 as a free variable.
On this basis,

ν2 = 1/(n − 1)(n − 3), λ+
3 /3μm = 1 + ν2, λ−

3 /3μm = −ν
√

1 + ν2, (3.5)

and

λ3/3μm = 1 − ν
√

1 + ν2 + ν2. (3.6)

These are plotted in figure 1. Evidently, |λ−
3 |/3μm ≈ O(ν), and it decreases as ν does

for large n. The dominant component λ+
3 /3μm is O(1). As n → ∞, ν → 0, λ−

3 → 0
and λ3 → λ+

3 → 3μm.
The skewness coefficient represents the principal parameter with which we describe

the effects of second-order nonlinearities on the geometry and statistics of the sea
surface with higher sharper crests and shallower more rounded troughs. For instance,
the distribution of the normalized surface displacements is described as (Longuet-
Higgins 1963)

pζ (z) =
1√
2π

exp

(
−z2

2

)[
1 +

λ3

6
z(z2 − 3)

]
. (3.7)

In linear waves where λ3 = 0, the preceding expression yields the Gaussian density.
The latter describes a symmetric surface structure with respect to the mean sea
level in that P − =Pr{ζ � 0} = 1/2 and P + =Pr{ζ > 0} =1/2. In other words, surface
displacements are equally likely both above and below the mean sea level. In nonlinear
waves where λ3 > 0, (3.7) leads to

P ± =
1

2

(
1 ∓ λ3

6
√

2π

)
. (3.8)

So, P + < 1/2 and thus P − > 1/2, more generally, implying that surface displacements
are more likely below the mean level than above it. Physically, the surface stays
somewhat longer below the mean sea level. If, however, we focus attention only on
the surface displacements which in absolute value exceed relatively large thresholds
symmetrically located above and below the mean level, we would see that just the
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Figure 1. Generalized Phillips spectrum: the variations of bandwidth ν, skewness coefficient
λ3 = λ+

3 + λ−
3 , λ+

3 and λ−
3 with exponent n (μm = σω2

m/g).

opposite occurs. These and various other results exploring the physical significance
of λ3 and its effects on the statistics of surface displacements, wave envelopes and
phases are elaborated elsewhere (Longuet-Higgins 1963; Srokozs & Longuet-Higgins
1986; Tayfun 1994, in press).

4. Stochastic wave groups and large crests in Gaussian seas
Consider first linear waves and assume that a large crest of amplitude h is observed

at x = x0 and t = t0. Boccotti (cf. Boccotti 2000) showed that as h/σ → ∞ the large
crest occurs when a well-defined wave group ζ1,c passes through x0. The surface
displacement ζ1,c around x = x0 + X and t = t0 + T is asymptotically described by the
conditional process

ζ1,c = {ζ1(X, T ) | ζ1(0, 0) = h} = ζ1,det + Rζ1
, (4.1)

where ζ1,det is of O(h) and given by

ζ1,det (X, T ) = 〈ζ1(X, T ) | ζ1(0, 0) = h〉 = hΨc(X, T ), (4.2)

with Ψc = Ψ/σ 2 (Lindgren 1970, 1972; Lindgren & Rychlik 1991), and Rζ1
(X, T ) repre-

sents a random residual of O(h0). Correspondingly, the velocity potential φ1,c of ζ1,c,
conditional on ζ1(0, 0) = h, is given by

φ1,c = {φ1(X, z, T ) | ζ1(0, 0) = h} = φ1,det + Rφ1
, (4.3)

where

φ1,det (X, z, T ) = 〈φ1(X, z, T ) | ζ1(0, 0) = h〉 = hΦc(X, z, T ), (4.4)

with Φc = Φ/σ 2 and Rφ1
(X, z, T ) is the random residual of O(h0).

Physically, ζ1,c represents a large wave group which evolves linearly through a
background wave of O(h0) represented by the residual Rζ1

. The largest crest occurs
at the apex of the group. As h/σ → ∞, both Rζ1

and Rφ1
can be expressed explictly



On nonlinear wave groups and crest statistics 227

in terms of Ψ and Φ , respectively (see the Appendix for details). Thus, for h/� � 1,
ζ1,c and φ1,c can be written as

ζ1,c = hΨc + �Qζ1
+ O(h−1), φ1,c = hΦc + �Qφ1

+ O(h−1), (4.5)

where � is of O(h0) and the deterministic functions Qζ1
and Qφ1

are given, respectively,
by

Qζ1
(X, T ) =

Ψc(X, T − T ∗) − ψ∗Ψc(X, T )

1 − ψ∗2
,

Qφ1
(X, z, T ) =

Φc(X, z, T − T ∗) − ψ∗Φc(X, z, T )

1 − ψ∗2
,

with ψ∗ = ψ(T ∗)/σ 2. If we interpret h and � as random variables, then ζ1,c identifies a
stochastic wave group, which together with φ1,c describes the kinematics and dynamics
locally around a randomly chosen crest. Note that, with h given in (4.5), averaging
over � yields the conditional means ζ1,det and φ1,det as expected.

The joint p.d.f. of ξ = h/σ and �̃= �/σ is given, as ξ → ∞, by (Boccotti 1989)

pξ,�̃(ξ, �̃) = pξ (ξ )p�̃(�̃), (4.6)

where

pξ (ξ ) = ξ exp

(
−ξ 2

2

)
, p�̃(�̃) =

exp(−�̃2/(2(1 − ψ∗2)))√
2π(1 − ψ∗2)

. (4.7)

Thus, ξ and �̃ are independent. Here, we shall show that large crests in second-order
nonlinear seas arise from focusing in stochastic wave groups.

5. Nonlinear waves and crests
The preceding results can be generalized to second-order waves, simply noting that

the nonlinear surface ζ is described by a nonlinear mapping of the form (cf. Fedele
& Arena 2005; Fedele 2006)

ζ = ζ1 + ζ2 = f (ζ1) (5.1)

between ζ1 and ζ at (X, T ) based on (2.1), (2.2) and (2.4). Assume for the moment
that we observe a large crest of amplitude hnl at X = 0 and T = 0. The nonlinear
surface ζ surrounding that crest locally is given by the conditional process

ζc = {ζ | ζ (0, 0) = hnl} . (5.2)

We can simplify this expression further by exploiting the weakly nonlinear nature of
(5.1) and recalling that ζ2 is phase-locked to the extremes of the first-order surface
ζ1. So, a large crest of ζ with amplitude hnl occurs simultaneously when ζ1 itself has
a large crest with an amplitude, say, h. Thus, (5.2) is equivalent to

ζc = {ζ | ζ1(0, 0) = h} = {ζ | ζ1 = ζ1,c} . (5.3)

This can be simplified further, using (5.1), to

ζc = f (ζ1,c), (5.4)

where ζ1,c is the Gaussian group of (4.5).
For long-crested narrowband waves in deep water, ζc becomes (Tayfun 1980, 1986)

ζc = ζ1,c +
ω2

m

2g

(
ζ 2
1,c − ζ̂ 2

1,c

)
+ O(ν), (5.5)
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where ζ̂1,c denotes the Hilbert transform of ζ1,c with respect to T . To describe ζc, or
equivalently f (ζ1,c), explicitly under more general conditions, we consider the discrete
form of the surface ζ1,c given by the real part of

ζ1,c =

N∑
n=1

Cne
i(kn·X−ωnT ), Cn �

(
h + �

eiωnT
∗ − ψ∗

1 − ψ∗2

)
S(kn)

σ 2
dkn.

We note that (2.1) along with (2.2) and (2.4) not only defines weakly nonlinear
random waves but also the general solution for the second-order surface, if cn and θn

are regarded as deterministic variables. Thus, we replace in (2.1) the linear component
ζ1 of the surface ζ with ζ1,c by setting

cn = Cn, θn = kn·X − ωnT ,

and take the real part of the resulting ζ to express ζc in a continuous form as

ζc = f (ζ1,c) = hΨc +
h2

4σ
F +

h�

2σ

G − ψ∗F
1 − ψ∗2

+
�2

4σ

H − 2ψ∗G + ψ∗2F
(1 − ψ∗2)2

, (5.6)

where

F(X, T ) =

∫
S1S2

σ 3
(A+

12 cosβ+
12 + A−

12 cos β−
12)dk1dk2, (5.7)

G(X, T ) =

∫
S1S2

σ 3
[A+

12 cos(β+
12 + ω1T

∗) + A−
12 cos(β−

12 + ω1T
∗)] dk1dk2,

H(X, T ) =

∫
S1S2

σ 3
{A+

12 cos[β+
12 + (ω1 + ω2)T

∗] + A−
12 cos[β−

12 + (ω1 + ω2)T
∗]}

× dk1dk2,

with Sj = S(kj ), j = 1, 2, and β
±
12 = (k1 ± k2) · X − (ω1 ± ω2)T . Evidently, the nonlinear

effects of O(h�) and O(�2) are clearly identified in (5.6). As we emphasize wave
crests, we shall not dwell on the derivation of the nonlinear velocity potential φc.
The latter can easily be obtained by applying the same approach to the nonlinear
mapping between φc and φ1,c given by (2.1), (2.3) and (2.5).

5.1. Expected shape of large waves

In general, (5.4) can be rewritten by way of (4.5) as

ζc = f (ζ1,c) = f (hΨc + �Qζ1
). (5.8)

We recall that h = ξσ and �= �̃σ are random variables with the joint p.d.f. (4.6).
Thus, given h, we average the preceding expression with respect to � to obtain

〈ζ | ζ1(0, 0) = h〉 = 〈ζ | ζ1 = ζ1,c〉� = 〈f (hΨc + �Qζ1
)〉� = f (hΨc) + O

(
σ 2

c

)
, (5.9)

where σ 2
c (X, T ) is the linear conditional variance of ζ1,c, and σ 2

c (0, 0) = 0. As ζ → ∞,
the second and higher order terms on the right-hand side of (5.9) become insignificant
relative to f (hΨc) = f (ζ1,det ). Thus, the leading asymptotic term of 〈ζ |ζ1 = ζ1,c〉 is
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f (ζ1,det ), which follows from (5.6) as

〈ζ | ζ1(0, 0) = h〉 = hΨc +
h2

4σ
F + O(h0). (5.10)

This provides the analytical form of the expected shape of large waves valid under
general conditions in deep or transitional water depths. For narrowband waves all
travelling in the same direction in deep water, A+

12 = 2ω2
m/g + O(ν), A−

12 = O(ν), and
so (5.10) reduces to the simpler expression

〈ζ | ζ1(0, 0) = h〉 = hΨc +
h2ω2

m

2g

(
Ψ 2

c − Ψ̂ 2
c

)
+ O(ν), (5.11)

where Ψ̂c denotes the Hilbert transform of Ψc with respect to T . The preceding result
also follows from the nonlinear mapping (5.5) in (5.9) (cf. Tayfun & Fedele 2007a).
In general, (5.11) and a more general expression derived by Jensen (1996, 2005) based
on Gram–Charlier expansions both represent approximations in contrast with (5.10),
which is exact because it satisfies the Stokes equations to second order. The leading
asymptotic term f (hΨc) of (5.9) can also be derived by solving the Stokes equations
to second order (Arena 2005). However, this approach requires rather cumbersome
algebra which can clearly be avoided if one realizes that the second-order solution of
Sharma & Dean (1979) has a general form valid for waves characterized with either
random or deterministic amplitudes and phases (Tayfun & Fedele 2007a).

5.2. Distribution of nonlinear crests

The highest crest of the nonlinear stochastic wave group ζc occurs at X = 0 and T =0
correct to O(ε). Further, the dimensionless amplitude ξmax = hnl/σ can be expressed
in the Tayfun form as

ξmax = ξ +
μ∗

2
ξ 2, (5.12)

where

μ∗ = μ

(
1 + K

�̃

ξ

)
+ O(ξ−2), (5.13)

and

μ =
F(0, 0)

2
=

λ3

3
, K = 2

−ψ∗ + κ1

1 − ψ∗2
, (5.14)

with

κ1 =
G(0, 0)

F(0, 0)
=

〈ζ1(0, t)ζ1(0, t + T ∗)ζ2(0, t)〉
μ

. (5.15)

The distribution of μ∗, conditional on ξ , is Gaussian with the mean and standard
deviation given, respectively, by

〈μ∗ | ξ〉 = μ =
λ3

3
, σμ∗|ξ =

μK

ξ

√
1 − ψ∗2. (5.16)

Figure 2 illustrates the nature of the parameters in the preceding expressions for the

spectrum (3.4). Evidently, μK
√

1 − ψ∗2 is O(10−2) as a typical result. Thus, σμ∗|ξ � 0
for ξ � 1, in which case μ∗ → μ and (5.12) converges to

ξmax = ξ +
μ

2
ξ 2. (5.17)
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Figure 2. Generalized Phillips spectrum: the variations of parameters in (5.16) with n
(m0 = 1 m2, ωm = 1 rad s−1 and μm ≈ 0.1).

A parallel derivation for the minimum, say, ξmin of the second-order sea surface around
a relatively deep trough gives

ξmin = −ξ +
μ

2
ξ 2. (5.18)

Thus, the most obvious manifestations of the physical effect of λ3 on the nonlinear
sea surface are higher crests and shallower wave troughs, as described quite explicitly
by (5.17) and (5.18), respectively.

The exceedance probability distribution and probability density of ξmax are given,
respectively, by

P (w) = Pr {ξmax > w} = exp

(
−ξ 2

2

)
, (5.19)

p(w) =
ξ

1 + μξ
exp

(
−ξ 2

2

)
, (5.20)

where w = ξ + μξ 2/2. The corresponding expressions for the trough amplitude |ξmin|
are

P (w) = Pr {|ξmin| > w} = exp

(
−ξ 2

2

)
, (5.21)

p(w) =
ξ

|1 − μξ | exp

(
−ξ 2

2

)
, (5.22)

where w = ξ − μξ 2/2.
The nature of troughs amplitudes, associated statistics and their extensions to waves

characterized with third-order nonlinear corrections are considered further in Tayfun
& Fedele (2007b). Thus, we shall hereafter focus only on wave crests and refer to
(5.17), (5.19) and (5.20) as the generalized Tayfun (T ) model simply because they
have the same form as the original Tayfun model and converge to it as μ → μm in
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m0 (m2) ωm (rad s−1) ν λ3 μ μm

Case A 1 1 0.100 0.274 0.091 0.102
Case B 1 1.065 0.428 0.232 0.077 0.116

Table 1. Parameters for the first-order spectra (6.1) and (6.2).

deep water. In the more general case, T is an exact theoretical representation of large
wave crests in second-order random seas characterized by a well-defined steepness
measure μ = λ3/3 in deep or shallow water.

6. Comparisons with simulations
Here, we consider two simple simulation cases, A and B, to illustrate and compare T

and the original Tayfun (Tm) model. In both cases, we assume infinitely long-crested
deep-water waves. Case A describes narrowband waves with the first-order spectrum

S(ω) =
m0

νωm

√
2π

exp

[
−1

2

(
ω − ωm

ωmν

)2
]

, |ω − ωm| /ωm � 6ν, (6.1)

where m0 = 1 m2 and ωm = ωp = 1 rad s−1. In contrast, case B represents fairly
wideband waves characterized by

S(ω) =
α

ωp

u−4 exp(−u−4)W (u), 0.1 � u = ω/ωp � 30, (6.2)

where

W (u) =

{
1 0 < u < 3.5,

(3.5/u)4 u � 3.5,
(6.3)

ωp = 0.773 rad s−1, and α is such that m0 = 1.0m2 for this case also.
The simulations in both cases follow from a two-step procedure whereby we first

generate linear Gaussian displacements at a uniform sampling rate of 10 Hz from
(2.2), using a Fast Fourier Transform with 220 random phases (δn) and Rayleigh-
distributed amplitudes (cn). These are then modified with second-order corrections,
using Tick’s (Tick 1959) equivalent form of (2.4) valid for infinitely long-crested waves
to generate the eventual nonlinear series efficiently. Each series so simulated is about
29 h long. This process is repeated four times in each case, thus providing us with
an ensemble of four linear and nonlinear series for analysing wave crests and related
statistics.

Table 1 summarizes the spectral parameters of relevance in the statistics of wave
crests. These follow numerically from the linear spectra (6.1) and (6.2). The parameters
of the nonlinear series in general differ from these as the second-order bound
harmonics with frequencies ω1 + ω2 and ω1 − ω2 render the first-order spectrum
slightly larger but noticeably wider over both low and high frequencies, mostly away
from the spectrum peak. As a result, second-order spectral moments are generally
larger than the first-order spectral moments, and so are some properties such as ωm

and ν. In comparison, λ3 and so μ are smaller due to the bound harmonics associated
with frequency differences. For example, the nonlinear waves simulated in case B are
characterized with m0 � 1.044 m2, ωm � 1.142 rad s−1, ν � 0.604, λ3 � 0.201, μ � 0.067
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Figure 3. Probability densities (thick continuous) and exceedances (points) of simulated linear
and nonlinear crests compared to theoretical models. Case A: narrowband spectrum, 67 040
linear and 67 041 nonlinear waves. Tm, Tayfun (μm =0.102) and T , generalized Tayfun (μ=
0.091). Case B: wideband spectrum, 76 996 linear and 78 931 nonlinear waves. Tm (μm = 0.116)
and T (μ= 0.077). In both cases, R, Rayleigh (μ= 0) appropriate to linear crests.

and μm � 0.136. These differ noticeably in the manner just described from the values
derived from the first-order spectrum (6.2) of case B in table 1.

Figure 3 shows comparisons of the probability densities and exceedances of linear
and nonlinear wave crests simulated in both cases with the theoretical predictions
from T , Tm and the Rayleigh (R) distribution appropriate to linear narrowband waves.
We recall that Tm is the same as T of (5.19) and (5.20) for μ = μm. The comparisons
in the upper part of figure 3 for the narrowband case A show that R describes the
probability density and exceedances of linear crests quite well over all waves, if one
allows for the relative scarcity of the simulated data and the higher variability of
estimates towards the very high-wave tail. The exceedance probability estimate for
the j th largest crest in a population of N independent samples is Pj = j/(N + 1). For
N � j , the standard deviation of Pj is of the form σj �

√
j/(N + 1) (cf. Tayfun &

Fedele 2007b). So, the variability of exceedance estimates for the largest five or so
samples is in general relatively large. In particular, σ1 of the largest value is as large
as the estimate P1 itself, irrespective of how large N is.
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As for the probability density and exceedances of the simulated nonlinear crests,
they are seen to follow the trends predicted by T faithfully. Tm appears close to T

but lies slightly above it. This is all entirely consistent with the expectation that T

converges to Tm as an upper bound as ν → 0.
The lower part of figure 3 shows similar comparisons for case B. Not surprisingly,

the probability densities of simulated crests display the bimodal structure typical of
relatively wideband waves, both linear and nonlinear. In contrast with the narrowband
case A, none of the theoretical predictions describes the distributions of either linear or
nonlinear crests well over relatively low waves. However, both the linear and nonlinear
scaled crests larger than about 1.5 are predicted quite well by R and T , respectively.
Tm appears as a conservative upper bound and overestimates the simulated crests. It is
worthwhile to mention that if the theoretical predictions are based on the parameters
estimated from the simulated nonlinear waves, the accuracy of predictions from T and
Tm deteriorates noticeably. Specifically, T tends to underestimate the simulated crests
since μ � 0.067 from the nonlinear waves versus the larger value 0.077 of table 1.
And, Tm overestimates the simulated crest rather significantly for μm � 0.136 from the
nonlinear waves compared to 0.116 of table 1.

7. Comparisons with oceanic measurements
For oceanic comparisons, we consider 9 h of measurements gathered at 5.12 Hz

with a Marex radar from the Tern platform in 167 m water depth in the northern
North Sea during a severe storm in January, 1993. This data set, hereafter simply
referred to as Tern, represents rather energetic storm seas with spectral-peak frequency
ωp = 0.433 rad s−1. The analysis of Tern as a whole gives σ = 3.024 m, ωm = 0.569 rad
s−1, ν =0.629, λ3 = 0.174, μ = λ3/3 = 0.058 and μm =0.1 as overall averages. However,
a similar analysis based on half-hourly series indicates all the preceding parameters
vary in time. In particular, 2.723 m � σ � 3.365 m. So, the half-hourly σ estimates
vary relative to the overall average σ = 3.024 m by as much as ±10 % approximately.
The larger σ values are typically associated with segments where larger waves occur
and the smaller values with relatively smaller waves. As a result, we find that scaling
elevations with the overall average σ tends to distort their distributions, in particular,
causing the crests of the largest few waves to appear noticeably larger than they
really are. So, to reduce such distortions, we analysed Tern in half-hourly segments
scaled by the corresponding half-hourly σ estimates. When analysed as a whole, Tern
has 3173 zero-up-crossing waves. Analysing it in 18 half-hourly segments reduces
the wave count by about 16 waves to 3157. This does not lead to any discernable
consequences in the statistics of wave crests discussed as follows.

We compare the probability density and exceedances of wave crests observed
in figure 4 first with the theoretical predictions from R(μ = 0), T (μ = 0.058) and
Tm(μm =0.1). As expected, the observed probability density, shown in figure 4(a),
displays the typical bimodal structure. None of the theoretical models describes the
wave crests smaller than about 1.5 correctly, as in the simulation case B. Tm appears
to describe larger wave crests well for the most part whereas T slightly underpredicts
them. The differences between T , Tm and the observed data trends are displayed more
clearly in the exceedance probability comparisons of figure 4(b) and even more so in
figure 5. In the latter case, we plot the ratio ξmax/ξR versus P , where ξR =

√
−2 lnP

and represents the crest height that would be predicted by R at the same exceedance
level as P of T or Tm. The relative stability of the exceedance estimates in figure 4(b)
are indicated by vertical lines representing ±σj bands associated with the exceedance
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estimate Pj for the j th largest crest, but only for 1 � j � 10 for clarity of presentation.
The stability of the ratio estimates ξmax/ξR in figure 5 is indicated by ξ±

max/ξR , where

ξ±
max =

√
−2 ln(Pj ± σj ). Both figures 4(b) and, particularly, 5 indicate that T tends to

underestimate larger wave crests noticeably whereas Tm overestimates them.
In Tern, the prediction inaccuracies do occur unavoidably because the parameters

μ and μm are derived from the nonlinear surface series. In theory, both parameters are
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based on an underlying ‘linear’ surface structure, plausibly comprised of waves with a
narrower spectrum and directional spread, for which we expect λ3 and thus μ = λ3/3
to be larger than 0.058. For the linear surface, μm is smaller than 0.1 also, but Tm

would still overestimate wave crests as an upper bound distribution. Consequently, the
steepness parameter needs to be modified to render T more practical and accurate
for typical oceanic applications. One can consider several possible alternatives for
this purpose. A particularly promising one which uses parameters derived from
Forristall’s (Forristall 2000) directional simulations and leads to consistently accurate
predictions for the statistics of large wave crests in deep and shallow water applications
is elaborated elsewhere (Tayfun 2006), and thus not repeated here. A simpler
alternative that works fairly well and consistently for deep-water waves follows from
the general nature of the skewness coefficient in long-crested seas, as we described in
§ 3. We recall that if large waves behave as long-crested narrowband waves locally,
then λ+

3 � 3μm(1+ ν2) and λ−
3 � − 3μmν. On this basis λ3 � 3μm(1 − ν + ν2). Thus, the

modified steepness parameter sought is approximated by

μa � μm(1 − ν + ν2). (7.1)

Setting μ = μa in T and Tm model reduces both to an identical form to which we
shall hereafter simply refer as Ta . For Tern, (7.1) gives μa � 0.077, and the resulting
Ta predictions compare noticeably better with Tern, as seen in figure 4(b) and more
clearly in figure 5.

The expected maximum crest, say 〈Z〉, in a population of N independent second-
order waves, each of which follows a parent distribution of the form Ta , is given by
(Tayfun & Fedele 2007b)

〈Z〉 =
√

2 lnN +
γ√

2 lnN
+ μa (γ + lnN) , (7.2)

where γ = 0.5772 . . . is the Euler constant. For N =3, 173 and μa � 0.077 in Tern, the
preceding expression yields 〈Z〉 � 4.824 as compared to the largest crest height 4.863
actually measured. The two differ less than 0.8 %.

In weakly nonlinear waves, third-order corrections to surface displacements, wave
envelopes and phases are all of O(λ2

3) and thus negligible relative to second-order
effects (Longuet-Higgins 1963, Tayfun and Lo 1990, Tayfun 1994). This has been so
assumed in developing the present theoretical results, and the favourable nature of
the Tern comparisons validates this assumption for the most part. However, whenever
third-order quasi-resonant interactions between free waves are at least as significant
as second-order corrections due to bound waves, surface statistics tend to deviate
from the second-order predictions. Such interactions and associated modulational
instabilities can be generated in wave flumes or numerically simulated under special
conditions, generally requiring that waves be rather long-crested and narrowband
(Socquet-Juglard et al. 2005; Onorato et al. 2006; Gramstad & Trulsen 2007). It is
uncertain if these represent oceanic wind waves correctly. The numerical simulations
of relatively wideband waves based on the Dysthe equation (Socquet-Juglard et al.
2005) and the fairly recent analyses of oceanic measurements gathered during a
number of hurricanes in the Gulf of Mexico and North Sea storms (Forristall 2000,
2007; Tayfun & Fedele 2007b; Tayfun in press) suggest otherwise. Also, quasi-resonant
modulational type distortions observed in wave statistics, numerically simulated or
mechanically generated in wave flumes, follow a fairly predictable and systematic
pattern in the form of a progressive excess of large waves, starting at wave height
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and crest levels near their significant values. This is predicted reasonably well by
third-order Gram-Charlier type expansions describing the statistics of long-crested
narrowband waves (Tayfun and Lo 1990; Mori & Janssen 2006; Tayfun and Fedele
2007b). Neither the present Tern results nor any of the aforementioned comparisons
of storm-generated extreme waves display any data trend even remotely similar to this
systematic pattern. Thus, the theoretical and oceanic evidence so far available seems to
suggest that the statistics representative of large oceanic wind waves are not affected
in any discernible way by third-order nonlinearities, including NLS-type modulational
instabilities.

8. Summary and conclusions
We have presented a new model for weakly nonlinear second-order random

waves and their statistics based on the concept of stochastic wave groups. The new
model provides a rigorous theoretical framework, enabling us to obtain closed-form
expressions describing the expected shape of large waves and the statistical structure
of associated crests. We emphasize that these expressions are valid in general for large
directional waves characterized by second-order nonlinearities in deep and shallower
water depths. There is no difficulty in developing similar expressions for various other
kinematic and dynamic properties of large waves. The concept of stochastic wave
groups also allows for further generalizations, in particular, to third-order nonlinear
waves (cf. Fedele 2006, 2008).

The generalized Tayfun distribution represents an exact result for large second-
order waves. It has a simple quadratic form dependent on a steepness parameter
defined as μ = λ3/3 exactly. In long-crested narrowband waves in deep water where λ3

tends to 3μm as an upper bound, μ → μm and the generalized distribution converges
to the original Tayfun model. In this case, either model describes the statistics
of crests of all waves quite accurately. In the more general case, the statistical
distribution of wave crests presents a more complex bimodal structure. Neither
the generalized model nor any other theoretical model so far devised can predict
this structure for relatively small wave crests. However, over the range of relatively
large waves, the generalized model represents wave crests just as accurately whereas
the original Tayfun model appears as a conservative upper bound and tends to
overpredict them.

In theory, λ3 and thus μ are defined in terms of the spectrum of the first-order linear
surface. Oceanic measurements often provide fixed-point time series of nonlinear
surface displacements. An estimate of λ3 derived from such measurements is in
general smaller than the theoretical value implied by the underlying first-order linear
spectrum. So is the steepness parameter, which causes the generalized distribution to
underpredict the wave crests observed, as we have shown in the Tern comparisons. This
source of inaccuracy is practically remedied if the steepness parameter is approximated
in the form μa =μm(1 − ν + ν2), where μm and ν represent estimates derived from
the frequency spectrum observed. Our experience indicates that this approximation
works fairly well for oceanic applications in deep water, but not always so well in
shallower water depths. A more effective alternative for shallow-water applications is
described in Tayfun (2006).

The authors are indebted to G. Z. Forristall for the Tern data utilized in this
paper.
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Appendix
To describe Rζ1

in terms of Ψ , we first express the wave profile at X = 0, say ηc(T ),
in terms of an O(h) contribution ηdet (T ) and a random residual r(T ) = Rζ1

(0, T ) of
O(h0) as

ηc(T ) = ηdet (T ) + r(T ), (A 1)

where

ηdet (T ) =
h

σ 2
ψ(T ). (A 2)

We can now determine the effects of r on ηc. As h/σ → ∞, the surface profile
around a large crest tends to assume the shape given by ηdet (Lindgren 1972; Boccotti
2000). The latter is characterized by a crest of amplitude h at time T = 0 and a local
minimum of amplitude ηdet (T

∗) at T = T ∗, with T ∗ being the abscissa of the first
local minimum of ψ(T ). However, the actual local minimum or simply the trough ηc

following the crest of amplitude h at T = 0 really occurs not at T = T ∗ exactly but
at T = T ∗ + u, where u represents a random variable. Further, ηc and η̇c at T = T ∗

attain values given, correct to O(h0), by

ηc(T
∗) = ηdet (T

∗) + � + O(h−1), (A 3)

η̇c(T
∗) = −η̈det (T

∗)u + O(h−1).

Conversely, if the conditions in (A 3) hold, then a crest of amplitude h at T = 0 is
followed by a trough at T = T ∗ + u.

Drawing upon Rychlik (1987) and Lindgren & Rychlik (1991), a regression satis-
fying both conditions of (A 3) exactly is given by

ηc(T ) = B1ψ(T ) + B2ψ(T − T ∗ − u), (A 4)

where

B1 =
σ 2h − ψ(T ∗ + u)[hψ(T ∗)/σ 2 + �]

σ 4 − ψ(T ∗ + u)2
, B2 =

σ 2[hψ(T ∗)/σ 2 + �] − ψ(T ∗ + u)h

σ 4 − ψ(T ∗ + u)2
.

To O(h0), u drops out, and ηc becomes

ηc(T ) = ηdet (T ) +
�

σ 2

ψ(T − T ∗) − ψ(T ∗) ψ(T )/σ 2

1 − ψ(T ∗)2/σ 4
+ O(h−1). (A 5)

It is straightforward to extend the above time-domain formulation to the space–time
domain obtaining new approximations for the stochastic wave group ζ1,c of (4.1) and
the associated potential φ1,c of (4.5).
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